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1. Phys. A: Math. Gen. 14 (1991) 2287-2314. Printed in the UK 

On the existence of infinite period-doubling sequences in a 
class of 4D semi-symplectic mappings 

Th Zeegers 
Centre for Theoretical Physics, University of Twente, PO Box 217, NL-7500 AE Enschede, 
The Netherlands 

Received 14 June 1990, in final form 31 January 1991 

Abstract. We investigate the existence of an infinite period-doubling sequence in the 
following class of semi-symplectic maps: a two-dimensional (ZD) nonlinear constant 
Jacobian map with an infinite period-doubling sequence, linearly and weakly coupled with 
a ZD linear map. We introduce the property of semi-symplecticity as the generalization of 
symplecticity that incorporates uniform dissipation. We define Krein signatures for pairs 
of complex eigenvalues and show that they play the same role as in the symplectic case. 
The Krein signature alternates in the per iddoubl ing  sequence of a ZD constant Jacobian 
map, whereas the signatures of iterates of a 2 D  linear map form (almost always) an 
uncorrelated row. With these results we show that any finite coupling strength destroys 
the infinite per iddoubl ing  sequence of the conservative maps of our class in two ways: 
firstly, there are 'bubbles of instahility'; secondly, and far more importantly, there are 
period-doubling bifurcations i n  which the newborn per iddoubled  orbits are unstable. So 
crucial parts of the period-doubling sequence are experimentally invisible. For the dissipa- 
tive maps of our class the same conclusions hold, but only if the coupling strength i s  strong 
enough. 

1. Introduction 

Period-doubling sequences seem to occur in many discrete dynamical systems. They 
are well understood for ID  unimodal maps and for constant Jacobian maps in two 
dimensions. However, for higher-dimensional maps the situation is not at all clear. 

In this paper we investigate the existence of period-doubling sequences in one of 
the simplest higher-dimensional cases: a ZD nonlinear constant Jacobian map with a 
period-doubling sequence, linearly and weakly coupled with a 2~ linear map. If there 
is no coupling, this 4~ map clearly has an infinite period-coupling sequence. Our main 
question is: does the period-doubling sequence, which exists in the uncoupled case, 
survive the coupling? 

We require that the combined system is what we call 'semi-symplectic'. Such systems 
have a constant Jacobian and can be seen as a high-dimensional generalization of the 
constant Jacobian maps in two dimensions. The semi-symplectic maps reduce to 
symplectic ones in the case of unit Jacobian. Their multipliers have symmetry properties 
with respect to a symmetry circle that are similar to those of the symplectic maps. 
These properties impose severe restrictions on the possible spectra of the derivative 
matrices. This gives us a maximum of control in creating high-dimensional period. 
doubling sequences. 

0305-4470/91/102287+28$03.50 0 1991 IOP Publishing Ltd 2287 
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Symplectic maps are interesting because they arise as stroboscopic maps of periodi- 
cally driven Hamiltonian systems. A Hamiltonian system with n degrees of freedom 
creates in this way a 2n-dimensional symplectic map. Similarly, semi-symplectic maps 
arise if to the Hamiltonian flow friction linearly proportional to the momenta is added 
(Valkering 1988). So our investigated 4D mapping can he thought of as the stroboscopic 
map of two periodically driven linearly coupled oscillators (one anharmonic, one 
harmonic) damped by the same friction. 

The period-doubling sequence in the uncoupled case is easy to understand. 
Obviously the additional linear map does not influence the dynamics of the ZD nonlinear 
map. At one stage of the period-doubling sequence the eigenvalues of the linearization 
round a fixed point behave as  in figures 1 or 2. Note that all the eigenvalues are on 
the symmetry circle and must meet somewhere. When we introduce some weak coupling, 
the positions of the eigenvalues can change only slightly. Moreover, we will see that, 
because of the semi-symplecticity, simple eigenvalues on the symmetry circle cannot 
leave this circle due to a small perturbation. So a periodic orbit can only lose its 
stability after collisions of eigenvalues on the symmetry circle. These collisions can 
occur on the real axis (at least two eigenvalues are involved) or somewhere in the 
complex plane on the symmetry circle (four eigenvalues are involved). 

Whether after collisions in the second case the eigenvalues actually move off the 
symmetry circle, or not, depends on the Krein signatures of these eigenvalues. The 
Krein signature is an important property of a complex pair of eigenvalues on the 
symmetry circle of a semi-symplectic map. The definition and results on the Krein 
signature we present are simple generalizations of this concept in the symplectic 
(conservative) case (Howard and MacKay 1987). As in the well-known conservative 
case, a collision of eigenvalues on the symmetry circle can only lead to eigenvalues 

Figure 1. Behaviour of eigenvalues in one part of the period-daubling sequence of  a 
symplectic map (the conservative case) with no coupling. The eigenvalues simply pass one 
another an the unit circle. 

Figure 2. Behaviour of eigenvalues in one pan of  the period-doubling sequence of a 
semi-rymplectic map (the dissipative case) with no coupling. The eigenvalues simply pars 
one another on the symmetry circle. 
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splitting off the symmetry circle if these eigenvalues have opposite Krein signatures. 
In this way a periodic orbit may lose its stability. In order to say something about the 
existence of a whole period-doubling sequence in the weakly coupled case, we have 
to investigate at every stage of the period-doubling sequence the possible occurrence 
of eigenvalues with opposite signature. Moreover, we have to determine the con- 
sequences of collisions of such eigenvalues. 

The set-up of the paper is as follows. 
i n  section 2 we give the definition of semi-symplectic mappings and discuss their 

general properties. 
In section 3 we describe the class of studied maps and question the existence of 

an infinite period-doubling sequence. 
In  section 4, Krein signatures for eigenvalues of semi-symplectic maps are defined 

and discussed. Some known results are formulated as apply to our problem. 
i n  seciion 5,  Krein signatures for the period-doubling sequence in the uncoupied 

case are investigated. The main result is that the signatures of the ZD period-doubling 
map alternate in a period-doubling sequence, whereas those of the linear map form a 
uncorrelated sequence (for almost all parameter values). Collisions of opposite-signed 
eigenvalues in the period-doubling sequence are inevitable and also must occur very 
close to the real axis. 

mtap, when changing the 
bifurcation parameter, are analysed. The relevant unfoldings of multiple eigenvalues 
are calculated explicitly for the period one case. Collision of eigenvalues with opposite 
signatures gives rise to a ‘bubble of instability’, whereas equal signatures generate an 
‘avoided crossing’. We argue that the higher-periodic cases are typically the same, with 
some properly scaled parameters. 

!x s e c t i ~ x  7 it i: shewn that this iz-p!ie: that fer any finite c=up!ixg in the censervati:~e 
case there are small ‘bubbles of instability’ in the period-doubling sequence. Moreover, 
and more importantly, there must (almost always) be period-doubling bifurcations in 
which the newborn periodic orbit is initially unstable. We can no longer speak of a 
period-doubling sequence in the conventional way. 

In  the dissipative case the same conclusion holds if the coupling strength is above 
some threshdd. Mnrenver, whenever !he s!abl!i?y In !he perind-dmb!ing sequence Is 
lost and we  change the bifurcation parameter adiabatically, we may miss the rest of 
the period-doubling sequence due to hysteresis effects. 

In section 6 the chaiiges in the spectriiiii of the 

2. Semi-symplectic maps 

In this section we define semi-symplectic matrices and maps and we describe some of 
their elementary properties. 

2.1. DeJinitions of semi-symplecfic matrices and maps 

Let J be I ? r ? x ? n  rea! %?!Fix obeyI!?g J 2 = - ?  and IT=-.!. 

Definition. We call a 2 n  x 2n real matrix M semi-symplectic (with respect to J, b )  if 
there exists a b > 0 such that 

MTJM = bJ det( M )  > 0. (2.1) 



2290 73 Zeegers 

Consider a mapping F :  9 + 9 where 9 c W2". Our restriction to Euclidean spaces 
is just for convenience and by no means crucial. Denote the derivative matrix of F 
by DF. 

Definition. We call a map F ( x )  semi-symplectic if there exists one constant b > 0 and 
one matrix J such that DF(x)  is semi-symplectic with respect to I, b for all x E a. 

F is symplectic (Arnold 1978) iff F is semi-symplectic and b = 1. Note that the definition 
of semi-symplectic maps implies that b does not depend on x and that 

det(DF(x)) = b" V X E 9 .  (2.2) 

Moreover, in two dimensions ( n  = 1) semi-symplecticity is equivalent to a constant 
positive Jacobian (as can be readily verified). 

2.2. Elementary properties 

The semi-symplectic maps and matrices possess nice properties equivalent to the 
well-known ones for the symplectic maps and matrices (Arnold 1978). We list the 
properties we need. 

Let M be any semi-symplectic matrix. From the definition of semi-symplectic 
matrices it follows directly that 

(Mx,  JMY)  = b(x ,  J y )  vx, y E a. (2.3) 

One can derive straightforwardly that the product of semi-symplectic matrices and 
the composition of semi-symplectic maps are again semi-symplectic. Also, the inverse 
of a semi-symplectic map is again semi-symplectic, and the identity map is semi- 
symplectic too. So the semi-symplectic maps form a group. 

Eigenvalues of semi-symplectic matrices have symmetry properties similar to those 
of symplectic ones. Those are, in short, that the spectrum of a symplectic matrix must 
be symmetric with respect to the real axis and with respect to the unit circle (Arnold 
1978). The same property holds for semi-symplectic matrices, if the unit circle is 
replaced by a circle with radius (figure 3). From here on we call this circle the 
symmetry circle, That the symmetry is there follows immediately from the fact that if 

Figure 3. Possible positions of the eigenvalues of a semi-sympleclic map with dissipation 
parameter b :  0, quadruplel; e, complex pair; 0, real pair. 
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M is semi-symplectic, then M / &  is symplectic (cf equation (2.1)). It can also be 
derived explicitly from the characteristic polynomial S(A) = det( M - All), which has 
the nice property 

For by the semi-symplecticity of M (2.1): 

S ( b / A )  =det(M - b/AD) 

=(l/h)'"[det(AJM- bJ)]/det(J) 

= (I/A)*"[det(AJM - MTJM)]/det(J) 

=(l/A)2" det(AD-MT)det(M)=(b/A2)"S(A). 

So, if A is an eigenvalue of a semi-symplectic matrix M, then also b/A, A* and b/A* 
must be eigenvalues (though not necessarily all different) and with the same multiplicity. 
There are three ways to satisfy this condition (figure 3). Every eigenvalue must be a 
member of (i) a quadruplet (A,  A*, b/A and b/A* all different); (i i)  a real pair ( A  = A*, 
b/A = b/A*); or (iii) a complex pair with absolute value & ( A  = b/A* # A*, A*), thus 

An eigenvalue A = +&is  a special case of a real pair and thus must have an even 
multiplicity. These properties clearly restrict the possible spectra of semi-symplectic 
matrices significantly. 

As well known (Broucke 1969), we may use these properties to reduce the charac- 
teristic polynomial. Using the symmetry (2.4) we can reduce the characteristic poly- 

stability index) 

n- thn r i i m m ~ t ~ r  A - c l ~  
".I L l l r  ",".'.."., U B L - L L . .  

nomia! of degree 2 n  in n in!o one of degree n in !he new variah!e (!he so-ca!!ed 

p =  A t  b/A. (2.5) 

There exists a straightforward connection between p and the three types of eigen- 
values of semi-symplectic matrices. The stability index p is complex iff the correspond- 

eigenvalues A form a (real or complex) pair. This pair is real if (pia 2 6  and is complex 
if ( p (  c2&. These properties follow immediately, indeed, because of definition (2 .5) :  

ing eigefiva!ues A foml s quadruplet The stability index p is rea! iff the corresponding 

A2 -pA + b = 0. 

3. Investigated maps and problem 

We can now formulate our problem more accurately. First we specify the class of maps 
which we investigate. Second we describe the period-doubling sequence of these kind 
of maps in the simple (decoupled) case and question its existence in the general (weakly 
coupled) case. 

3.1. Class of studied maps 

Throughout we consider a semi-symplectic map F: 9 -t 9 where 9 c W4. F is built up 
from a nonlinear ZD semi-symplectic map H J y ) ,  linearly coupled with a linear map 
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4 2 .  The parameters c and d govern trace(DHc) and trace(&) respectively, The 
coupling strength is ruled by the parameter k :  

where y ,  r € R 2 .  We impose the following properties on F and its components: 
(1) F is semi-symplectic with respect to J4, b (for all e, d and k )  where: (i) J4 and 

b do not depend on the parameters c, d and k ;  (ii) J4 is a biock-diagonai sum of .i2, 

where necessarily JT = -J2 and J ;  = -1. 
(2) H , ( y )  possesses a proper infinite period-doubling sequence in c. By proper we 

mean that: (i) at every period-doubling bifurcation precisely one period-doubled orbit 
is born out of the original; (ii) trace DH:."(y*(c)) depends strictly monotonically on 
the bifurcation parameter c (where y * ( c )  denotes a stable 24 periodic point); (iii) 
whenever D H f " ( y * ( c ) )  possesses a double eigenvalue (at it is not semisimple. 

(3) The eigenvalues of Ld are complex and trace(Ld) depends strictly monotonically 
on d. 

Property { i j  must hoid For aii vaiues of k, ihus aiso For k = U. Tiis  impiies that 
both DH, and Ld must be semi-symplectic with respect to J 2 ,  b. In order to get property 
(1) for k # 0, one must choose the coupling matrices M and N properly. 

Property (3 )  restricts the considered values for parameter d to the interval 

{dl  -2&< trace(L,) < 2 6 ) .  

3.2. Period-doubling in the decoupled case k = 0 

If k = 0, F is decoupled and the y-plane is an invariant stable plane. So all the 
(asymptotic) dynamics of F are just those of H,. Especially, F possesses the same 
period-doubling sequence as H, in c. In each step in this period-doubling sequence 
two eigenvalues, associated with L,, are fixed somewhere on the bqi' circle in the 
compiex plane. The two others, associated with H , ,  move monotonicaiiy around as in 
figure 2. The two different eigenvalues thus meet precisely once somewhere on the bqk2 
circle each step (period q )  in the period-doubling sequence (figures I or 2). 

3.3. Small coupling: does the period-doubling sequence survive? 

Our main interest will he in the influence of a small coupling k on the above-described 
period-doubling sequence in the parameter c. The position of a periodic orbit and the 
eigenvalues of its Jacobi matrix depends continuously on the parameters. A single 
period point with simple eigenvalues cannot change character (quadruplet, real pair, 
complex pair) due to the semi-symplecticity of the map. So great changes in the 
spectrum due to small perturbations may only occur at non-simple eigenvalues. 

If there is no coupling ( k = O ) ,  collisions of eigenvalues may occur at *v% or 
somewhere on the symmetry circle. Thus also for small but non-zero coupling collisions 
of eigenvalues may occur at those places. In the first case a real pair may become a 
complex pair (or vice versa), in the second case a quadruplet may be formed out of 
two complex pairs (or vice versa) (figure 8). However, the second case does not typically 
lead to the creation (or annihilation) of a quadruplet. Whether or not a quadruplet 
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can be created depends on the Krein signatures. This is well known for the symplectic 
case, but holds just the same for the semi-symplectic one, as we will show. 

4. Krein signatures 

We now define the Krein signatures for pairs of eigenvalues on the symmetry circle 
of a semi-symplectic matrix. Our definition is a straightforward generalization of the 
concept of the Krein signature for symplectic matrices (Arnold and Avez 1968). 
Moreover, we show that the Krein signature governs the behaviour of multiple eigen- 
values under perturbation, in the same way as in the symplectic case. We do so by 
reformulating our semi-symplectic lemmas on  Krein signatures in equivalent symplectic 
ones. Those symplectic lemmas are known to hold (Moser 1958, Krein 1955, 
Yakubovich and Starzhinskii 1975, Howard and MacKay 1987). 

Definition 4.1 (Yakubovich and Starzhinskii 1975). Let M be a semi-symplectic matrix 
(with respect to J, b )  with a pair of complex eigenvalues A, A* = b / A  # A (thus on the 
symmetry circle) with generalized eigenspaces V, and Vf. Let W, be the real M -  
invariant plane 

W, = (U + U* 1 U E VJ. 

Then we call the pair of eigenvalues (A, A*): (i) definite, if the quantity ( x ,  JMx) 
has the same sign VXE W,, x#O; (ii) mixed, otherwise. 

Definition 4.2. If A, A* is a pair of definite eigenvalues of a semi-symplectic matrix 
M, then we define 

Krein signature(& A*) = sign(x, JMx) for any x E W,, x # 0. 

Now we recall some facts about Krein signatures of symplectic matrices. These 
facts also do hold in the semi-symplectic case. Details and proofs can be found in 
appendix 1. 

Lemma 4.1. If A, A *  = b / A  is a pair of simple complex eigenvalues (thus on the 
symmetry circle), then the pair A, A* is definite. 

Lemma 4.2. The Krein signature of a pair of simple complex eigenvalues of a semi- 
symplectic matrix cannot change due to continuous perturbations, as long as this pair 
remains simple and complex. 

We remark that we have deliberately not considered the case A = *A, because it 
is different. However, one can define a kind of signature too with an interesting property. 

Definition 4.3. Let A = ifi be an eigenvalue of a semi-symplectic matrix M with 
generalized eigenspace W,. Then we call A definite if the quantity (x .  JMx)  is semi- 
definite on W, and not identically zero. Moreover we define in that case 

Krein signature(A) = sign(x, JMx) 
must have an even 

multiplicity, So the simplest cases are double semisimple eigenvalues A = i& and 
double non-semisimple ones. The semisimple type is not definite; the non-semisimple 
is given in lemma 4.3. 

for any X E  W, such that (x ,  JMx) f 0. 

By the spectral properties (section 2)  an eigenvalue A = 
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Lemma 4.3. Any double non-semisimple eigenvalue A = *& is definite. Moreover, 
any pair of simple complex eigenvalues created by a continuous perturbation must 
have the same signature. 

The notion of the Krein signature is important because it describes what can happen 
with a pair of complex eigenvalues on the symmetry circle of a semi-symplectic matrix 
M ( c ) ,  when the parameter c is changed. 

Consider a smooth family M ( c )  of semi-symplectic matrices with respect to J, b 
(where b does not depend on c ) .  Let M ( c J  have a pair of simple complex eigenvalues. 
Then for c close enough to c,, M ( c )  must also have a pair of simple complex 
eigenvalues, due to the spectral properties of M (section 2). And by lemma 4.1 such 
a pair is definite and by continuity (lemma 4.2) its signature cannot change. The only 
way a simple eigenvalue can leave the symmetry circle is by collision with another 
eigenvalue. 

Changing parameter c further, eigenvalues collide, say for c = c I .  One complex 
pair can collide at +& and become a real pair. Two complex pairs can collide 
somewhere on the symmetry circle and may form a quadruplet. There are two types 
of collisions of two complex pairs: 

(1) Two complex pairs that are definite and have equal signature, colliding into a 
pair of multiple eigenvalues on the symmetry circle for c = c I .  This multiple pair is 
again definite, with the same signature as those from the original eigenvalues. A further 
change of c cannot create a quadruplet, so all eigenvalues must stay on the symmetry 
circle and must remain definite. 

(2) Two complex pairs colliding into a pair of multiple eigenvalues other than in 
case (1). Primarily collision of two simple pairs with opposite signature. This multiple 
pair is mixed. A further change of c can create a quadruplet, so the eigenvalues may 
leave the symmetry circle. 

The first part of both statements follows from the continuity property for collided 
eigenvalues. This is known in the symplectic case (Yakubovich and Starzhinskii 1975) 
and can be extended to the case b < 1 (argument given below). 

Let A ( c )  and p ( c )  and conjugates be two different complex pairs of eigenvalues 
on the symmetry circle for C E ( C , ,  c , ) ,  which collide for c =  c I  ( A ( c , )  = p ( c I ) ) .  Then 
A ( c I ) = p ( c , )  is definite if h ( c )  and p ( c )  are definite and have equal signature for 

So for collisions of pairs of simple complex eigenvalues A(c), p ( c )  and conjugate 
at c =  c , ,  we see that the pair of collided eigenvalues is definite (mixed) if A ( c )  and 
p ( c )  have equal (opposite) signatures for c near e , .  

Once we have a pair of multiple eigenvalues on the symmetry circle, its response 
to small perturbations is ruled by the semi-symplectic versions of Krein’s and Moser’s 
theorems (Krein 1955, Moser 1958). 

C E ( C 0 ,  Cl ) .  

4.1. Krein’s theorem 

Let M ( c , )  be a semi-symplectic matrix with respect to J, b. Let A I ( c I )  = A 2 ( c l )  = . . . = 
A,,,(cl),  A * ( c , ) =  b / h ( c , ) # A ( c , )  be a pair of multiple complex eigenvalues on the 
symmetry circle that is definite. 

Then for all smooth families M ( c )  of semi-symplectic matrices with respect to J, 
b (where b does not depend on c) for all c in a neighbourhood of c I  the eigenvalues 
A j ( c ) ,  A\f(c) (j= 1 . . . m )  must be on the symmetry circle and must be definite. 
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4.2. Moserk theorem 

Let M ( c , )  be a semi-symplectic matrix with respect to J,  b. Let A I ( c , ) = A 2 ( c I ) = . .  .= 
Am(c , ) ,  A*(c , )=  b / A ( c , ) #  A(c , )  be a pair of multiple complex eigenvalues on the 
symmetry circle that is mixed. 

Then there exist a smooth family M ( c )  semi-symplectic with respect to J, b (where 
b does not depend on e ) ,  such that for all c, s c < c2 four eigenvalues A, (c ) ,  A2(c) ,  
A f ( c ) ,  A\T(c) split off the symmetry circle and form a quadruplet. 

Howard and MacKay have described both cases in more detail (for b = 1). In the case 
of mixed eigenvalues the formation of a quadruplet is typical. In almost any family 
of semi-symplectic matrices M ( c )  a quadruplet is created (or destroyed) at a multiple 
mixed pair of eigenvalues. They also have shown that eigenvalues with equal signature 
typically do not collide at all. 

All these results have originally been proven for the symplectic case b = 1. We now 
give the argument why they must hold in the general semi-symplectic case. 

For any semi-symplectic family M ( c )  one can define a corresponding symplectic 
family M s ( c )  E M ( c ) / f i .  Also the other way around: for any symplectic family M d c )  
and for any given O< b < 1 one can define a semi-symplectic family M ( c ) -  MS(c)&. 
Note that: (i) all eigenvalues of M s ( c )  are equal to those of M ( c ) ,  apart from .a 
multiplication by l / f i ;  (ii) all eigenspaces and eigenprojections of M s  and M are 
identical; (iii) the signatures of the corresponding eigenvalues are identical. 

Now if the semi-symplectic version of a symplectic lemma is not true, then we 
could construct a symplectic family that would violate the symplectic result. This would 
give a contradiction and thus we conclude that the semi-symplectic versions of the 
results of Krein (1955), Moser (1958) and Howard and MacKay (1987) must hold. 

We conclude that pairs of complex eigenvalues on the symmetry circle of semi- 
symplectic matrices cannot leave this symmetry circle under small perturbations, as 
long as they are simple or multiple but definite. They almost certainly leave the symmetry 
circle and form a quadruplet in the case of multiple mixed eigenvalues. 

5. Period-doubling sequence and Krein signatures in the uncoupled case 

In  order to understand the influence of weak coupling on the period-doubling sequence 
of a map F of the form (3.1), we first have to understand the uncoupled case properly. 
Especially we have to know the Krein signature of the eigenvalues of DFQ at every 
stage of the period-doubling sequence ( Q  = 1,2,4,8 . . . ) in the uncoupled case. There- 
fore we investigate the relationship between the Krein signature of the complex 
eigenvalues of a general semi-symplectic map M and its square M 2 .  The squaring rule 
for signatures turns out to be very simple. 

With this knowledge we investigate the behaviour of the Krein signature in proper 
period-doubling sequence (see section 3) of a ZD map like H,. We have a distinguish 
between the conservative and the dissipative case, the former being more simple. The 
result, however, turns out to be the same: the Krein signature alternates in a proper 
period-doubling sequence. 

Then we investigate the Krein signature of the eigenvalues of L.2 ( Q  = 1,2 ,4 .  . . ). 
It turns out that this signature forms an effectively random sequence in Q (for almost 
all parameter values d ) .  
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We already know that in the case of weak coupling instabilities in the period- 
doubling sequence can only be created by collision of eigenvalues with opposite 
signature. So we end this paragraph with an investigation where and how eigenvalues 
collide in the uncoupled case. We will see that the eigenvalues can meet anywhere on 
the symmetry circle with any relative signature. 

5.1. S p o r i n g  rule for s ipatures  

Let M be any (2n  x2n)  semi-symplectic matrix, with a pair of simple complex 
eigenvalues A and A* = b / A  (#A). Then M 2  is also semi-symplecticand has eigenvalues 
A’ and A*2. Unless A = *i& and unless (-A) is an eigenvalue too, A’ and A** form 
again a simple complex pair. So the signatures of both pairs of eigenvalues are well 
defined. Moreover, there is a very simple relationship between these signatures. 

Lemma 5.1. Let M be a semi-symplectic matrix with a pair of simple complex 
eigenvalues A and A* = b / A  ( # A )  and A Z *id‘% and let ( - A )  be not an eigenvalue. Then 

signature(A2,A*2) of M’=sign(A+A*) signature(A,A*) of M. (5 .1)  

Proof Firsi observe that A and A’ ‘nave ihe same generaiized eigenspaces. Tne reai 
invariant plane W, in the definition of Krein signature is ZD in this case because the 
pair of eigenvalues is simple. If e, e* are the eigenvectors of A and A* respectively, 
then any vector x E W, can be written as x = (e + c*e*, 6 E 6). Using the anti-symmetry 
of J (section 2) we calculate (x, JMx) for x E W, (we use the convention ( e , f )  = X e7L 
for the inproduct of complex vectors): 

(x, JMx) = @*A*( e, J e )  + g * A (  e*, J e * )  = ,g*( A* - A ) (  e, J e )  

where (e, Je)  is purely imaginary (as it should be). The same calculation for (x, J M 2 x )  
yields 

(x, J M 2 x )  = g*(A*2-A2)(e, J e ) ,  

So we conclude that 

( x , J M ~ x ) = ( A * + A ) ( x , J M x ) .  

We know that (x, JMx) and (x, J M 2 x )  must be definite because every simple complex 
pair must be definite (lemma 4.1). Using the definition 4.2 of signature, this proves 
the lemma directly. 

The lemma above does not describe the cases A = hi& and A = *&. In the case 
that M has an eigenvalue A = hi&, M 2  has a double semisimple eigenvalue -b. So 
its signature is not defined. In the case that M has a semisimple double eigenvalue 
A = +fi, signature ( A )  is not defined. For the case in which M has a non-semisimple 
double eigenvalue hJ6 we find lemma 5.2. 

Lemmo 5.2. Let M be a semi-symplectic matrix with a non-semisimple double eigen- 
value A = *fi. Then 

signature(A’, A * 2 )  of M 2 =  sign(A) signature(& A * )  of M. (5.2) 
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Proof: First note that the Krein signature of A is well defined (lemma 4.3) because A 
is not semisimple. The same holds for A'. Now consider a smooth family of semi- 
symplectic matrices M ( & )  for O s  E < eo such that M ( 0 )  = M, A(O)=  A"(0) = A = *& 
and A ( E ) ,  A * ( € )  form a simple complex pair for E > O .  Then the signature of A ( E ) ,  
A*(&)  is also well defined and the continuity result (lemma 4.3) assures that 

signature(A(0)) = signature(A(&), A*(&))  

taking lim €10 and again using the continuity we find lemma 5.2. 

for 0 < E S E ~ .  

The ~ 9 - o  h n l A r  Fnrthn C ~ . . - . ~ A  ".," I . . _"  En- - x n  ...~ -nl n-..l.l I---- < 1 Than *..- *yl.." .'&U " ' L Y Y L C U  C L ~ " " L 1 U C " .  . U1 r , " w c  call ayply  , ~ , , L , , . ~  , . I .  La>*.. 

5.2. Krein signature in a conservative 20 period-doubling sequence 

Consider the ZD symplectic mapping H, that possesses a proper period-doubling 
seq.enc. 
are spectrally stable, the eigenvalues must be on the unit circle during the whole 
period-doubling sequence. Since this sequence is proper, multiple eigenvalues +1 are 
not semisimple (section 3). So the signature of the two eigenvalues is defined for all 
values of the e-parameter. 

Denote the parameter values of the period-doubling bifurcation by ca. c I ,  c2, .  . . . 
Assume for convenience that c, < c: < c2 < . . . . When continuously changing c : cG-! + c; 
the eigenvalues move from +1 to -1 on the unit circle in a continuous way. Their 
Krein signature does not change in this operation because of the continuity of signatures 
(lemma 4.2). Thus the signature of the eigenvalues in a period-doubling sequence 
depends only on the period (thus not on c explicitly). We will show that they alternate 
in the period-doubling sequence. 

!he paramptpr c. Sifir. the p&rl_ic orbits i. 1 peria&do&!iflg seq.pnce 

The two eigenvalues collide at -1 as c +  c,. At the bifurcation point c=c, 

where S,(c) = DHy (fixed point of period 2 9 .  Now by lemma 5.2 we see that at a 
period-doubling bifurcation the signature of the period-doubled orbit must be opposite 
to the original signature: 

":".."+.,--/e I ^  \\--^:"lnr..mIC /.. i\ I C  ", 
J l ~ l L n r u L r \ c l q + , \ L q , ,  - - J l ~ ~ L L r u r r \ c l q \ L U I , .  

Again using the continuity of signature (lemma 4.2) we see that signature(S,,+,(c))= 
signature(Sq+,(cq)) for c >  cq. Consequently the Krein signature alternates in a 2~ 

conservative period-doubling sequence. 

< z niFFinntillo ,n ,.nvo 

Consider a ZD dissipative, semi-symplectic map Hc,b with det(DH) = b < l .  Let Hc,b 
have a proper period-doubling sequence in c. This dissipative case differs significantly 
from the conservative case because the eigenvalues of the stable periodic points can 
(and do) become real (figure 4). So the Krein signature is no longer defined during 
the whole period-doubling sequence (but only in parts of it). 

However, in a proper period-doubiing sequence there must be in each interval 
I, E ( c q - ,  , c,) precisely one interval J, c I, such that the eigenvalues of the 2q orbit 
are complex iff c E 1,. There can only be one such an interval J, since in a proper 
period-doubling sequence the eigenvalues depend monotonically on the bifurcation 
parameter (section 3). Krein signatures can be defined for all C E  I,, and it is clear (by 

_._. -.-".~ -..11 _I "-"- 
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Figure 4. Behaviour of eigenvalues in one part of a 2” proper period-doubling sequence, 
b < I ,  from the saddle-node bifurcation (left) to the period-doubling bifurcation (right). 

continuity of the signatures) that the signature does not change in I, .  We now argue 
that in many families Hl., the signature must alternate in the same way as in the 
conservative case. 

We consider families of mappings H , ,  that are semi-symplectic for all c and all 
b E [ b o ,  13, O <  bo< 1.  So, varying c at every period-doubling bifurcation, precisely one 
period-doubled orbit is bom. Thus for every c there exists precisely one unique stable 
periodic orbit that is a continuation of the original one. We call the collection of 
parameter values (c ,  b )  at which the 2q + 24+’ period-doubling bifurcation occurs L,. 
Using the properties of proper period-doubling sequences we know that L, is the graph 
of a continuous function over b: L, = { ( c ,  b )  I c = c,(b)} .  

Varying b, we can also continue the stable periodic orbits uniquely. As long as 
there are no bifurcations (we do not cross any L,) this follows from the implicit 
function theorem. But also varying b through a bifurcation value, the stable periodic 
orbit can be continued uniquely. To see this, change b from just before a bifurcation 
vaiue to just aiter and consider an aiternative route through parameter space as in 
figure 5 (first change c through L,, then change b and then change c backwards). This 
alternative route must exist and can be chosen close to the original one because L, is 
a graph over b. Along this alternative route the stable periodic orbit can clearly be 
continued uniquely into a stable period-doubled one. This uniqueness guarantees the 
unique continuation along the original route. 

c 

Figure 5. Part of the ( e ,  b )  parameter plane of a semi-rymplectic family Hr,h. Period- 
doubling bifurcation occurs at the line e = e , ( b ) .  Full arrow, bifurcation by changing b 
only; broken arrow, alternative route that can be chosen arbitrarily close to the first one. 
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We conclude that Hc,b possesses a continuous family of (spectrally) stable periodic 
orbits in (c, b) and that with each (c, b)-value there corresponds precisely one element 
of this family. With this knowledge we can describe the Krein signatures in a proper 
period-doubling sequence of a dissipative map. 

Lemma 5.3. Let Hc,b be a ZD semi-sympletic map for all c and all b e  [bo, 1 1  where 
b=det (DH)  and O <  bo< 1 .  Suppose that HSb possesses a proper period-doubling 
sequence in c for all b E [bo, I]. Then: 
(i) the Krein signature of the 2' periodic orbit is for all c E J,,(b) the same and thus 
the signature depends only on q ;  
(ii) signature(q + 1) = -signature( 4). 

Roof(see also figure 6). Let V, = { ( c ,  b )  I b o 6  b s 1, c E JJb)) .  So if (c,  b) = ( c , ,  b,) E V, 
then there exists a stable 2q-periodic orbit with complex eigenvalues. So their Krein 
signature is then defined. By changing c we get (c,  b)= ic2.  & ) E  Vq+l ana we want to 
compare the signatures of the eigenvalues of the original orbit and the period-doubled 
orbit. 

4 r -  
Stoble period 2 '  Stable period 2" '  

. 
Figure 6. Pan of the (e ,  b )  parameter plane far a family H,, of remi-sympiedic mappings 
with a proper period-doubling sequence in c. Dotted areas V, refer to the Jacobian with 
eigenvalues in a complex pair. Thick line indicates period-doubling bifurcations at c = c,(b). 
Arrows indicate the two routes used in the proof of lemma 5.3. 

We do this by  considering an altemative route from ( c I ,  b,)  to ( e 2 ,  bl). First vary 
b: b,+ 1 and c such that (e ,  b) E V, all the time. Then keep b = 1 and change c through 
the bifurcation value c = c , ( l )  so that (c ,  b) E V,,, . Then change b :  1 + b, back and 
again c so that (b, c )  E V,,, all the time. We already have shown that we can continue 
the stabie periodic oibits uniqueiy. During this whoie procedure the eigenvaiues of 
the stable orbit (first period 2 4  then period 29") are complex, so their Krein signature 
is defined during the whole route. This is also true at the bifurcation value b = 1, 
c = c q ( l ) ,  for proper period-doubling sequences can have only non-semisimple double 
eigenvalues. Moreover, Krein signatures are conserved by continuous perturbations 
so that the signature can only change at the bifurcation value b = 1, c = c,( 1 ) .  And we 

So we have created an alternative route from ( c , .  b,) to ( c 2 ,  b,) and we know that 
for (c ,  b) = ( c2, b,) there must exist a period 2'" orbit, continuously deformed out of 
the original 2q one, with signature opposite to that original one at ( c , .  h). By the 
unicity of a continuous family of stable periodic orbits, the orbit we get by the alternative 

know from the consewa~~ve Case that ii necessari:y iiiiisi ihaiige ;heie, 
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route must be the same as the one we get by directly changing c : c, + c2 and keeping 
b = bl fixed. So also by the direct route the signature in lq+, must be opposite to that 
one in J,. 

5.4. Signature of iterates of a 20 linear map 

In order to understand period-doubling sequences of F (equation (3.1)). we must also 
investigate the Krein signatures of the semi-sympiectic (id)'". We have assumed the 
eigenvalues A of L, to be complex, so that the eigenvalues A 2 q  of (L,,)" are like 

h2? = v ' P  exp(iv+,,) os+9s1 ( 5 . 5 )  
and complex conjugate. From now on we will call +q the phase of A p .  We investigate 
how the signatures of A,, A d , .  . . , Al., . . . depend on A ,  and its signature. 

and +q of two eigenvalues A 2 ~ w  and A2u is 
given by 

The relation between the phases 

+q = r(+q-,) 

The tentmap (5.6) does not only determine A p ,  given A , ,  but also its signature. To 
see this, we consider the well-known symbolic dynamics for T (Devaney 1986) as 
follows. With every 4 E [0,1] we associate an infinite string ( a o ,  Q , ,  a z r . .  . ) where the 
a, E {O, 1) are defined by 

if 0s r"(+)cf 
a, = 1 if ii T"( +) =s 1 (5.7) { :ndefined if T"(+)=f .  

Apart from the ambiguities in points + = p X 9  ( p ,  q E N) the connection between 
q4 and its itinerary (ao, Q,, Q ~ , .  . . ) is one-to-one (Devaney 1986). Consequently, with 
every infinite row ( a o ,  a , ,  a 2 , .  . . ) there corresponds a unique phase +. 

Now let A, = f i e x p ( i v @ , )  and let &,have itinerary (au,  Q , ,  a 2 , .  . . ). By ( 5 . 5 ) ,  (5.6) 
and (5.7) the real part of A p  is positive (negative) iff a,=O (1). Moreover, this real 
part is zero iff a, is undefined. Applying the squaring rule for signatures (lemma 5.1) 
we see, provided that a9-, is defined, 

signature(A,*) = ( - l ) a g - i  signature(h2u-l). ( 5 . 8 )  

signature(A,q) = (-l)';:kaf, signature(A,). (5.9) 

Repeating this argument gives 

Almost all & have an infinite well-defined itinerary. Therefore, with (5.9) the 
signatures of the corresponding row of eigenvalues ( A , ,  A 2 ,  A 4 . .  . ) are well defined 
and determined by the itinerary of 4, and the signature of A , .  

Only for phases +o=p2-4  ( p ,  g EN)  is the infinite itinerary not defined. This set is 
oizero measure. i i  we take p uneven (aiways possibiej, oniy ihe first ao,  . . . , ay-2 are 
defined. Therefore the signatures of only A , ,  A > ,  A.,, . . . , A,.- are defined. For n 2 
q, LC2"' is semisimple with a double eigenvalue on the negative (n = q )  or positive 
( n  3 q + 1) real axis. 

The dynamics of the tentmap (5.6) are relatively simple (see Devaney 1986). For 
almost all starting points +,, it holds: (i) the orbit of +o fills the whole interval (0, 1) 
uniformly; (5) the values a.  in the itinerary of +o are uncorrelated. 
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The exceptional starting points &,are those with an asymptotically periodic itinerary 
(set of zero measure). Moreover, the dynamics of the tentmap depend sensitively on 
the starting point q50. The tentmap is even chaotic. 

We summarize the results in the following lemma. 

Lemma 5.4. Let L, be a 2 x 2 semi-symplectic matrix with complex eigenvalues A ,  and 
AT. Let A 2 u  and A$ be the eigenvalues of L(d2" with phases dq E [0,1] (see equation 
(5.5)). Then for almost all parameter values d :  (i) the phases (&, 41,  . . . ) are uniformly 
distributed over the interval (0, 1); (ii) the signatures of A I ,  A,,  . . . , A 2 0 , .  . . are well 
defined; (iii) the row of signatures is uncorrelated. 

Summarizing the results on ZD mappings we see: for a 20 constant Jacobian map 
with a proper period-doubling sequence in parameter c, the Krein signature can be 
defined as long as the eigenvalues are complex; the signature depends only on e through 
the period and alternates in the period-doubling sequence. 

The Krein signatures of the complex eigenvalues of the iterates of a 2~ linear map 
form typically an uncorrelated sequence. 

5.5. Types of collisions of eigenvalues 

We now investigate where and how collisions of eigenvalues can occur in a period- 
doubling sequence of a 4~ map (3.1) with no coupling ( k = O ) .  We will show that, 
typically, collisions occur anywhere on the symmetry circle and with any relative 
signature (equal or opposite). 

In the uncoupled case, the position of collision of eigenvalues of a 24 periodic 
orbit is completely determined by the (fixed) position of the eigenvalues of L'". Because 
we have assumed the period-doubling sequence of H, to be proper, the two pairs of 
eigenvalues must meet precisely once in each step of the period-doubling sequence. 

Typically, the two pairs of eigenvalues collide somewhere on the symmetry circle 
off the real axis and create a complex pair of multiple eigenvalues. This complex pair 
can be definite or mixed, depending on the relative signature. 

Exceptionally, the eigenvalues of L y  can become real, i.e. This only occurs 
for very special values of the parameter d, namely if the eigenvalues of L, have phase 
@ of the form p2-" ( p ,  n E N). In that case, a four-fold eigenvalue occurs in the 
period-doubling sequence. 

Now consider the whole period-doubling sequence of F (equation (3.1)) for k = O  
and given value for d. We assume d to be typical in the sense that the phase &, of the 
eigenvalues of Ld does not have an asymptotically periodic itinerary. Then we know 
by the results above (lemma 5.4) that considering all periods together the position of 
collision of eigenvalues is uniformly distributed over the phases 6. Especially, by 
choosing the period 2' properly, we can find a multiple eigenvalue arbitrarily close to 
the real axis (+ arbitrarily close to 0 or 1). 

For these typical d-values, the Krein signature of one pair of eigenvalues alternates 
in the period-doubling sequence (lemma 5.3), while the signature of the other pair 
forms an uncorrelated row (lemma 5.4). So in the period-doubling sequence both equal 
and opposite signatures must occur. Especially, by choosing the period 2' properly, 
we can find a multiple mixed eigenvalue arbitrarily close to the real axis. The same 
holds for a multiple definite pair. 
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We conclude that in the uncoupled case for almost all values of the parameter d 
Krein collisions of eigenvalues with opposite signature are inevitable and that these 
collisions occur anywhere on the symmetry circle, also arbitrarily close to the real axis. 
The same conclusion holds for equal signature. 

6. Period-doubling sequence in the case of weak coupling 

Now that we have described the period-doubling sequence in the uncoupled case, we 
can turn to the case with weak coupling. First note that turning on the coupling slightly 
can influence the position of the eigenvalues only slightly. So collisions of eigenvalues 
in the case with weak coupling occur close to those of the uncoupled case, as listed 
above. The most common cases are collisions of two complex pairs with equal or 
opposite signatures. Howard and MacKay (1987) have already examined what can 
happen in these two cases. 

When two equal-signed eigenvalues move towards each other, they typically do 
not collide, but repel each other when close together. We see an ‘avoided crossing’ 
(figure 7). By Krein’s theorem we know that the eigenvalues can never leave the 
symmetry circle, even if they do collide. So collisions into definite eigenvalues cannot 
affect the stability of the periodic orbit. 

When two opposite-signed eigenvalues move towards each other, they typically do 
collide and form a quadruplet (figure 8). So collisions- into mixed eigenvalues can 
affect the stability of the periodic orbit. 

We will calculate the unfoldings of a multiple complex eigenvalue explicitly in two 
examples, one with opposite signatures and one with equal signatures. We will show 

Figure I .  Typical behaviour of eigenvalues in one pan o f  the period-doubling sequence 
of a symplectic map ( b  = 1) with non-zero coupling in the case o f  two complex pairs of 
eigenvalues with equal signature. The eigenvalues do not collide at all: an ‘avoided crossing’. 

Figure 8. Typical behaviour of eigenvalues in one pan o f  the period-doubling sequence 
of a Symplectic map ( b  = 1) with non-zero Coupling in the case of two complex pairs of 
eigenvalues with opposite signature. The eigenvalues form temporarily a quadruplet: a 
‘bubble of instability’. 
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that the results of these calculations are typical in the class of studied maps (3.1). We 
will see that also higher iterates of maps of type (3.1) are typically described by our 
two examples, at least in lowest order approximation. This gives us the opportunity 
to study period-doubling sequences of maps of type (3.1) in the next section. 

6.1. Unfolding of mixed eigenvalues in an example 

As our first example, we choose a map F of type (3.1) with 

I O  -1 0 
M = [ o  01 ”=[ 0 0 1  

(6.1) 

The origin is a fixed point with opposite-signed eigenvalues. Let c = co and d = do be 
such that DF(0) possesses a pair of double complex eigenvalues A. and A$ on the 
symmetrycircleifk=O ( - l < c o = d o < + l ) ,  

In appendix 2 we calculate the influence of perturbations on c, d and k on these 
eigenvalues, by first calculating the influence on the stability indices p (equation (2 .5 ) ) .  
We find that a perturbation c = co+ Sc, d = do+ Sd, k # 0 gives 

p = po+ Sc+ Sd +J(Sc-  Sd)’ -  k’ (6.2) 
where po is the stability index belonging to c = co, d = do,  k = 0. We know (cf equation 
(2.5)) that p is complex iff the corresponding eigenvalues form a quadruplet. So a 
quadruplet exists iff (Sc - ad)’<  k2. 

For the eigenvalues A, equation (6.2) implies in lowest-order perturbation 
(appendix 2) 

A = A o +  (Sc+ Sd * J ( S c - S d ) ’ -  k’). 
A o - b l A o  

(6.3) 

Varying (decreasing) the bifurcation parameter c and keeping d and k # 0 fixed 
(Sd  = O), we see that a quadruplet is created out of two pairs when Sc = Ik/ and that 
this quadruplet falls apart in two pairs again when Se = -1kl. We observe a ‘bubble of 
instability’ (figures 8 and 9) (Howard and MacKay 1987) obeying in lowest order 

bk’ 
-[2 Im(Ao)]’‘ 

I A - A  1’- (6.4) 

Note.that the size of this bubble is larger when A,, is closer to the real axis. 

101 I b I  

Figure 9. ‘Bubble of instability’ lor a semi-symplectic map ( b  < I ) .  ( a )  Relatively small 
coupling (stability conserved). ( b )  Relatively large coupling: loss of stability. 
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Only for small enough coupling, all the pairs of eigenvalues involved with a bubble 
of instability are complex pairs (as in figures 8 and 9). This is the case whenever the 
inequality 

jkl< 2 J b i  po (6 .5 )  

holds for both * signs. To see this, we calculate p at the points of creation/annihilation 
of the quadruplet (i.e. Sd =0, 6 c = i l k l )  with equation (6 .2) .  By equation (2.5) we 
know that the creatediannihilated pairs are complex iff /pi <2&. This gives inequality 
(6.5) directly. 

If the coupling strength is larger, so that inequality (6.5) is violated for at least one 
sign, the bubble of instability has become so large as to hit the real axis (figures 10 
and 11). The smallest value for Ikl for which this happens, kv(Ao) ,  is lower when A. is 
closer to the real axis (for then 2&+p0 is small for one sign). In the limit for Im(Ao) 
io zero, k,(ho) aiso goes to zero. 

From these calculations we see the following. 
In the conservative case the fixed point becomes unstable for any non-zero coupling 

strength. Normally (i.e. for collision far from +1) the behaviour of eigenvalues, when 
varying c (and fixing k and d ) ,  is as in figure 8: for lScl< k there is a bubble of 
instability, but varying 6c through k the eigenvalues reconcile and the fixed point 

Figure in. Cnllisinn o f  two pairs nf complex eigenvalues nf il symplecric map ( h  = !! with 
opposite signatures in the neighbourhood of -1. Note that two eigenvalues pass -1 from 
the real axis to the unit circle, which is essentially different from figure 8. 

Figure 11. Collision of two pairs of eigenvalues of a semi-symplectic map ( b <  I )  with 
opposite signature and in the neighbourhood of -1. ( a )  Relatively small coupling: stability 
is conserved; periddoubling bifurcation is conventional. ( b )  Relatively large coupling: 
loss of stability; eigenvalue move$ inwards the unit circle at the bifurcation (as in figure IO). 
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regains its stability. However, if the collision of eigenvalues take place near -1, the 
eigenvalues hit the real axis before reconciling (figure 10). A more complex bifurcation 
then happens. We see that once the origin has lost its stability, it will never regain it. 

The dissipative case is slightly different because the unit circle and the symmetry 
circle no longer coincide. This means that a bubble does not cause instability at once: 
only for strong enough coupling ( k  above some threshold) the fixed point loses its 
stability (figure 9). Again the eigenvalues reconcile, unless they hit the real axis before. 
If they hit the real axis, they can do so between 4% and -1 (figure 11) or outside 
-1 (figure 1 1 ) .  This last case is the only case in which the origin loses its stability but 
never regains it. 

The same conclusions hold mutatis mutandis for eigenvalues near to +1 and +V%. 

6.2. Unfolding of definite eigenvalues in an example 

The calculations for the definite eigenvalues are very much like those for the mixed. 
The results differ only in some signs, which, however, generates essentially different 
behaviour. 

As our second example, we take H, and M as in equation (6.1), but choose 

2d -6 1 0  
(6.6) 

The origin is a fixed point with equal-signed eigenvalues. Let c = c, and d = do be such 
that DF(0) possesses a pair of double complex eigenvalues A. and A: on the symmetry 
circlei fk=O(thus - l < c o = d o < + l ) .  

In the same way as in the mixed case, we find for small perturbations 

p = po+ Sc+ Sd + J (  6c -  k2 (6.7) 
where po is the stability index belonging to c = c,, d = do ,  k = 0. Note that since the 
expression under the root is non-negative, a quadruplet can never be created (cf 
equation (2.5)). 

For the eigenvalues A, equation (6.7) implies in lowest-order perturbation 

(Sc+ Sd i J ( S c  - Sd)2+ k2).  (6.8) 
A0 

Ao-blAo 
A = A O +  

Varying the bifurcation parameter c and keeping d and k fixed, we see an ‘avoided 
crossing’, that is, the eigenvalues only approach each other, but do not collide. One 
may say that they ‘push each other away’. When the distance between the eigenvalues 
is minimal, it holds 

bk’ 
[ A - A  1 2 -  

- [ 2  Im(A,)12 (6.9) 

No quadruplets can be created and thus stability cannot be lost by formation of a 
quadruplet. The only way the fixed point can lose its stability is by formation of a real 
pair out of a complex pair at *V% so that one eigenvalue can pass * l .  

6.3. Unfoldings of eigenvalues offixed points in the general case 

The results from the example above turn out to be typical for unfoldings of multiple 
eigenvalues of a fixed point at the origin in the class of maps (equation (3.1)). Only 
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the semi-symplecticity and the block structure (3.1) and the type of eigenvalue (definite 
of mixed) are essential. Using these properties, one can prove (appendix 3, equation 
(A3.12)) that equations (6.2) and (6.7) for fixed points of maps (3.1) at the origin in 
general read exactly 

p = p,,+;(Su( D H ) +  Su( L ) * J ( S u (  D H )  - Su(L)) '+4k2u(  M N ) )  (6.10) 

where U means trace, S denotes perturbation and DH should be evaluated in the fixed 
r_ nnint .... ll _. It _. i. .I clear that this ....- i s  .- a - ~ eeneralization of .. equations ( 6 2 )  and (6,7)1 Moreover, 
the coupling strength u ( M N )  is typically non-zero. Its sign is determined by the type 
of multiple eigenvalue: a + sign corresponds with a definite eigenvalue (equation (6.7)) 
and a - sign with a mixed eigenvalue (equation (6.2)). We note that the unfolding 
described by equation (6.10) is codimension two, which is in agreement with the results 
of Howard and MacKay (1987). 

We conclude that the unfolding of a pair of double complex eigenvalues on the 
symmetry circle of a fixed point at  the origin of any map of type (3.1) is essentially 
described by equation (6.2) or (6.7), depending on the relative signatures. 

6.4. Unfoldings for eigenvalues of periodic fixed points 

In deriving equation (6.10) we only used the special form (3.1) of the map F. Because 
iterates of semi-symplectic maps are again semi-symplectic, one might expect that the 
same argument will do for iterates of F. However, for two reasons, iterates of maps F 
of type (3.1) are themselves not of this type: (i) the position of the periodic fixed 
points depends on the parameters c, d and, more importantly, on k; (ii) the Jacobian 
matrix is only approximately of the desired block structure (3.1). 

Nevertheless we will see that equation (6.2) or (6.7) is still essentially correct. 
First we note that any qperiodic point x,(c, d,  k )  of a map (3.1) must be ofthe form 

(6.11) 

This follows by introducing a new variable 5 as z = &. With the form (3.1) the 
mapping becomes 

y ' =  H , ( y )  + k2Mc 5' = Ld< + Ny. (6.12) 

In these coordinates the mapping depends only on the parameters c, d and k'. This 
implies equation (6.1 1). 

The position dependence of the Jacobian DF enters only via the y-component and 
thus it must be even in k. Therefore, the Jacobian evaluated in a periodic point 
x,, = xq(c,  d, k )  must be of the form [ D H ( c ,  d, k)* k M ]  

k N  L '  DF(x , )  = (6.13) 

For the relevant Jacobian of the q-fold iterated map this implies 

where A, are 2 x 2 matrices (still depending on the period 4). 
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We are now able to consider a 9-periodic point with multiple eigenvalues. Let 
c = co and d = d o  be such that DFq possesses multiple eigenvalues on the symmetry 
circle for k = 0. We can calculate the influence of a perturbation c = c,+ Sc, d = do+ Sd, 
k Z O  in appendix 3. We find that in lowest order (equation (A3.11)) 

sI Sc+ s4 Sd +J(s, Sc - s4 Sd)'+ k2Un 
2 

Sp = (6.15) 

w i m r  S, ariu s4 a ~ c  riun-~rru wnsLants any uit. L-unsLanr Eo is iypicaiiy iioii-zero. its 
sign is related to the type of eigenvalues: a plus sign describes the unfolding of a 
definite pair of eigenvalues and a minus sign that of a mixed pair. 

This formula is essentially (up to a reparametrization) the same as in the period 1 
case (6.2) and (6.7). Note, however, that those results are exact, whereas equation 
(6.15) is an approximation. So for small perturbations Sc, Sd = 0, k all the results for 

orbits. Of course one should replace the friction and coupling parameters b and k by 
the effective friction and coupling: 

bce(9)= bq k J 9 )  = M k .  (6.16) 

I t  is not clear how the effective coupling depends on the period. Especially the behaviour 
for q+m seems to be relevant: does the effective coupling strength tend to zero 
( 1  UO(9)l+ 0 for 9 + m) or is it uniformly bounded away ( 1  U,(q)l> constant > 0 for 9 
large)? 

We have investigated this numerically for our example (equation (6.6)) up to period 
9 = 64. For each period 9 = 1, 2, 4, 8, 16, 32, 64 we choose the parameters c and d 
such that for k = 0 the periodic orbit had a purely imaginary multiple definite pair of 
eigenvalues. Turning on the coupling (Sc=Sd=O, k i 0 )  (6.15) gives for the two 
stability indices 

(6.17) 

We have used this to determine I U,( 9)1 for b = 0.9 and b = 0.99. We found that I un(9)l 
obeys by good approximation a power law behaviour: 

IUdq)l=49" (9=1,2 ,4 ,8  ,..., 64) (6.18) 

with exponent (Y about 2.5. This strongly suggests that I UO(q)l is an increasing function 
of 9 and thus is uniformly bounded away from zero. The effective coupling seems to 
get stronger with the period. 

... L-. ._> . --- _._ _... .._... ~ . ~ .  .~.> *L. ..... 

+h- - -AAA 1 Iaf nn..ot:-rl I6 I L  C )  n - A  I < O i i  rill,. h r l A  Fe- +ha ---:-A:,- 
L..C yc""" I CLIPC \'. cq"'L'"'L" \".-,, ,".', '2.1" \".7,, LII>U ,,"," ,U1 L l l r  y-yc"""Lb 

Ip, -p2I2 = 1 U,&'+ higher-order terms. 

I. Consequences for infinite period-doubling sequences 

It is now clear what happens to the original infinite period-doubling sequence (of the 
uncoupled case), when the coupling is made non-zero. We have to distinguish between 
the conservative and the dissipative case. The conclusion will be that in the conservative 
case any finite coupling strength changes essential parts ofthe period-doubling sequence 
essentially, while in the dissipative case the same holds if the coupling is above some 
threshold value. 

In the conservative case ( b  = 1) with finite coupling strength k, at every period 2 4  

the eigenvalues interact just once. In  half of the cases (on the average) the eigenvalues 
have equal signature, so the stability of the periodic orbit is not affected. In half of 
the cases (on the average) the eigenvalues have opposite signature, so that the periodic 
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orbit loses its stability by a Hamiltonian Hopf bifurcation. In most cases (for small 
k) these Krein collisions take place just somewhere on the unit circle and a bubble of 
instability like in figure 8 occurs: changing the bifurcation parameter c the periodic 
orbit first loses its stability but later regains it. This process is followed by a normal 
period-doubling bifurcation at  -1. 

However, for almost all values of the d-parameter there are periods 2q for which 
the Krein collision takes place very close to the real axis. More precisely, for any finite 
coupling strength k we can find a suitable period such that the bubble of instability 
circumvents the point -1, as in figure IO. The quadruplet reconciles in two real pairs. 
Therefore, the period-doubling bifurcation that follows creates an unstable period- 
doubled orbit (figure 12). Changing the bifurcation parameter c further, this unstable 
orbit regains its stability, by first creating a quadruplet that falls apart in two complex 
pairs (figure 12). This follows from equation (6.15) for the period-doubled orbit. The 
bifurcation diagram looks like figure 13. A crucial part of the period-doubling sequence, 
namely one of the period-doubling bifurcations, corresponds with an unstable orbit 
and thus is experimentally spoken of as invisible (figure 14). We cannot speak anymore 
of a period-doubling sequence in the usual way. We remark that the first period in 
which a Krein collision close to the real axis occurs depends rather sensitively on the 
parameters (that is, on d and k). 

Figure 12. Position of the eigenvalues of the period-doubled orbit that arises from the 
process sketched in figure IO. ( 0 )  Moment of creation. Arrows indicate change of position 
of  eigenvalues when the bifurcation parameter c is changed further. The eigenvalues will 
collide and form a quadruplet. ( b )  Changing the bifurcation parameter c further. the 
quadruplet falls apart in two complex pairs. At that moment the periddoubled orbit 
becomes stable (for the first lime). 

The dissipative case is much like the conservative one, only the unit circle and the 
semi-symplectic symmetry circle are no longer the same. A Krein collision of mixed 
eigenvalues will not necessarily lead to instability. Only for strong enough coupling 
do eigenvalues cross the unit circle (figures 9 and 15). We then have a Hopf bifurcation, 
creating an invariant circle. 

Just as in the conservative case, the periodic orbit usually regains its stability when 
the parameter c is changed a little further. The quadruplet can reconcile in two complex 
pairs again, in two real pairs inside the unit circle or in two real pairs with two 
eigenvalues outside the unit circle. Only in this last case does the following period- 
doubling bifurcation create an (initially) unstable period-doubled orbit. 

However, there is a practical difference that in dissipative systems hysteresis effects 
may occur. The invariant circle, created by the Hopf bifurcation, can be asymptotically 
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Figure 13. Bifurcation diagram for the period-doubling bifurcation of a symplectic map 
with P I I  four eigenvalues close to -1. -Stable period unstable period orbit 
with one eigenvalueoutside the unit circle: unstable periodic orbit with twoeigenvalues 
outside the unit circle. (a) No coupling, k=O: ordinary period-doubling bifurcation. ( b )  
With coupling so large that eigenvalues circumvent -1  (as in figure IO): period-doubled 
orbit is unstable just after its birth. 

Figure 14. Sketch of a pan  of the (c, k )  parameter plane for a symplectic map ( b =  I ,  d 
fired). C, indicates the bifurcation parameter value if k =O.  Hatched areas refer to periodic 
orbits that are instable due to bubbles. Unhatched areas refer to periodic orbits that are 
stable. Thick lines referto period-doubling bifurcations. Left, ordinary bubble ofinstability. 
Right, bubble that circumvents - I  for strong enough coupling. Note that a thick line 
(bifurcation) lies in the hatched area (instability). 

stabie. if this is the case and we vary the bifurcation parameier c adiabaticaiiy, we 
will stick to this invariant attracting circle. The moment the original periodic orbit 
regains its stability will thus not be noticed. So in the dissipative case, if the coupling 
strength is above some threshold value, we are also not able to follow the period- 
doubling sequence in practice (i.e. adiabatically). 
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c,., c, Co., 
c 

Figure IS. Sketch o f  a part of the (c, k) parameter plane for a semi-symplectic map ( b  < I ,  
d fixed). C, indicates the bifurcation parameter value if k=O. Hatched areas refer to 
periodic orbits that are instable due to bubbles. Unhatched areas refecr to periodic orbits 
that are stable. Thick lines refer to period-doubiing bifurcations. Left, ordinary bubble of 
instability. Right, bubble that circumvents -1 for strong enough coupling. Note that a 
thick line (bifurcation) lies in the hatched area (instability). 

Appendix 1 

In this appendix, the precise formulation of the first three lemmas of section 4 and 
their proofs are given. 

Lemma 4.1. Let M be a semi-symplectic matrix (with respect to J, b )  with a pair of 
(algebraically) simple complex eigenvalues A, A* = b / A  # A (thus on the symmetry 
circle). Then the pair A, A* is definite. 

Proof: M is semi-symplectic, so M , -  M I &  is symplectic. If M has a pair of simple 
complex eigenvalues A, A* with combined real invariant plane W,, then M s  has a pair 
of simple complex eigenvalues A s  = A/&, A: = 1 / A ,  with the same invariant plane 
W,. Now simple complex eigenvalues of symplectic matrices ( b  = 1 )  are known to be 
definite (Yakubovich and Starzhinskii 1975), so (x ,  JM,x) is definite on W,\{O}. But 
this implies directly that (x,  JMx)  is definite on W,\{O}, so A, A* must be definite too. 

The Krein signature of complex pairs of simple eigenvalues has an important 
continuity property. 

Lemma 4.2. The Krein signature of a pair of simple complex eigenvalues of a semi- 
symplectic matrix cannot change due to continuous perturbations, as long as this pair 
remains simple and complex. 

Proof: As long as the pair of eigenvalues remain simple and complex, their signature 
is detined (lemma 4.1). So the quantity (x ,  JMx)  of definition 4.1 must he definite on 
W,. This quantity clearly depends continuously on M (Kato 1966), so its sign cannot 
change. 

Lemma 4.3. Let M be a semi-symplectic matrix with a double non-semisimple eigen- 
value A =*A. Then A is definite. 

Moreover, let M ( E )  be a continuous family of semi-symplectic matrices with a pair 
of simple complex eigenvalues A ( & ) ,  A ( & ) *  on the symmetry circle for E > O  such that 
M ( 0 )  = M and A(0) = A. Then A has the same signature as A ( & )  ( E  > 0). 
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ProoJ In W, we choose a real basis e , ,  e2 consisting of the generalized eigenvectors 
of M, i.e. 

Me,  = h e ,  Me, = he2+ e , .  

Because M is not semisimple, (y, J ( M  - A  . n ) x )  cannot be zero for all x, y E W,. When 
we write x = x,e,  +x2e2, and likewise for y we see that 

(Y. J ( M - A .  V x ) = x 2 y 2 ( e , ,  Je , )  

(e2, JeJ # 0. 

(x .  JMx)  = ( x d 2 ( e 2 ,  J e , )  

This can only be not identically zero if 

With this property we see that 

is semi-definite on W, and not identically zero. So by definition 4.3 A is definite. 
To prove the second part, first note that for E > O  the complex pair A ( E ) ,  A*(E)  is 

definite by lemma 4.1. Thus ( x ,  J M ( E ) x )  is definite on WA(&) for E > 0, and its sign is 
signature (A,  A*). Or in an alternative formulation, let P ( E )  be the eigenprojection on 
WA(&), then (P(E)x, J M ( E ) P ( E ) x )  is semi-definite on whole R2" (for E > O )  and when 
it is non-zero, its sign is signature(A, A*) (note that it cannot be identically zero!). The 
eigenprojection P ( E )  depends continuously on E because M (  E )  depends continuously 
on E (Kato 1966). Moreover, P(0)  is precisely the eigenprojection on W,(O) (Kato 
1966). Taking lim E J O  we find that (P(O)x, JM(O)P(O)x) is semi-definite on R2" and 
thus that (x, J M ( 0 ) x )  is semi-definite on W,(O). We already know by the first part of 
this lemma that (x ,  J M ( 0 ) x )  is not identically zero on W,, so its sign = signature A is 
well defined and must be the same as signature(A(e), A * ( E ) )  for E >O. 

Appendix 2 

In this appendix we calculate the unfoldings of multiple mixed eigenvalues. We do 
this explicitly for our example, the map (6 .1 ) .  

Consider the map F (6.1) and its fixed point in the origin. The eigenvalues of the 
linearization around this fixed point obey by semi-symplecticity 

A 4 -  uA3 + yA2- buA + b2 = 0 

U = trace(DF) (M.1) 
y = second minor(DF) = {[trace(DF)]'-trace(DF*)}/2. 

Introducing the stability indices p = A + b / A  (U), this reduces to 

p2- u p  + y -26 = 0. (A2.2) 

We will investigate the influence of small perturbations in the parameters c, d and 
k, starting with a decoupled system (k  = 0) and with a complex pair of double 
eigenvalues (thus with ca= d o ,  Idol <A). 

U,, = 2(  co + do) 

Uncoupled it holds (with equation (6 .1))  

po = 4c0d0 +2b. (A2.3) 

Perturb c = co+ Sc, d = do+ Sd, k # 0; then 

U = u0+2(Sc+ Sd) y = yo+4(coSd + do&) + 4ScSd + k2.  (A2.4) 



2312 Th Zeegers 

Substituting co = do we find for Sp = p - po: 

Sp = Sc + Sd f J ( S c  - - kZ (A2.5) 

Sp (and thus p )  complex implies a quadruplet (section 2). Thus there exists a quadruplet 
iff k 2 >  (Sc - Sd)'. Consider this case, then 

(A2.6) Sp = Sc+ Sd *iJkZ - (Sc - Sd)'. 
,.,:.L &L:" _^^__,I -- .L^ "&"%.:I:*.. :..-I-.. ... ̂ ^^- c - 1  ~ - - - . . I .  C ^ _ . L .  .: 8 
"11111 L l l l J  l F D U l l  ",I L U G  araur11ry L l l U C &  w c  La,, ,,I," a 1C5"l l  ,U1 L,,C c,gc,,va,uc:s A. 

For by definition of p (equation (2 .5 ) )  

A2-pA + b = 0. (A2.7) 

With A = A o +  SA, p = pu+ Sp and po = A o t  b / A ,  this implies for SA 

( A o -  b/Ao- Sp)SA - AoSp = 0. (A2.8) 

If 

(A2.9) 

and 

ispi<< jAo-b/hoj 

we can approximate 

Sp + 0 ( S p 2 ) .  (A2.10) A0 

Ao-b /Ao  
SA = 

Note that for A. in a complex pair b!A,=h$ and thus Ao-b!A,=2i Im(A,) #O. 
All together, when varying c ( S c  # 0) and fixing d (Sd = 0) we find a bubble of instability: 

+ 0 ( 6 p 2 ) .  (A2.11) 
k' 

(2 Im 
[ A  -A0i2  = 

,Appendix 3 

In this appendix we perform some calculations on the eigenvalues of a general 4 x 4  
semi-symplectic matrix A. Then we apply this to the Jacobi matrix of fixed and periodic 
points of maps F of type (3.1). We calculate the unfolding of a complex pair of double 
eigenvalues on the symmetry circle. It will be shown that the results for our example, 
as analysed in appendix 2, are typical for both fixed and periodic poinis of maps oiii 
of class (3.1). 

First consider a general 4x 4 semi-symplectic matrix A. We divide A in four 2X 2 
blocks: 

(A3.1) 

Due to the semi-symplecticity, the eigenvalues of A are completely determined by 
det(A) = b and the first two minors of A, denoted u ( A )  and y(A), where u(A) is 
trace(A) and in general (for any matrix A )  

y ( A )  = ( U ( A ) ~ - ( T ( A * ) ) / ~ .  (A3.2) 
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Again we reduce the secular equation for the eigenvalues A to an equation for the 
stability indices p (cf equation (A2.2)): 

(A3.3) p 2 -  u(A)p+ y(A)  -2b = 0. 

We calculate u(A)  and y(A).  By the block division of A one finds 

d A ) = 4 A , ) + d A 3  u(A')  = u ( A ; ) + u ( A ~ )  +2u(A,A,). (A3.4) 
r,":"" I * ,  1) +I.- ,.*Le- I..".. ~_̂ .....4 
U""'& C\1"LL'"1L ,rLJ.L, 111G "LllCl w a y  ~-I"U,," 

u(A?)=u(A,) ' -2y(AI)  = u(A,)* -2 det(A,) 

so that 

d A )  =  AI) + 4 A J  

?(A) = ?(A, )  + y(A4) +u(AI)u(AJ - u(AZAJ (A3.5) 

= det(A,)+det(A,)+ u(A,)u(A4)  - u(A,A,). 

So the value of the stability index p and of the eigenvalues A of a 4 x 4 semi-symplectic 
matrix A are completely determined by  u(A, ) ,  u (A4) ,  u(A2A3), y(A,) ,  y(A4) and b. 

Now let A(c, d, k )  =DF"(x , (c ,  d, k ) )  where F is a map of type (3.1) and 
x,=x,,(c, d, k) is a q-periodic point for F. We investigate the case that D F q  has a 
complex pair of double eigenvalues on the symmetry circle and small perturbations 
of this case. Let A = DF9 have such a complex pair of double eigenvalues for parameters 
c = c,, d = d o ,  k = 0. For these parameter values the off-diagonal blocks A2 and A, are 
identically zero. So there can be a pair of double eigenvalues only if uo(A,)  = uo(A4) 
where the subscript 0 refers to the special parameter choice c = c,, d = do,  k = 0. Then 

uo(A:) = uc(A4) = uo(A)/2 = po ? . , ( A ; ) = y , ( A : ) = b ,  (A?:@ 

Now consider a small perturbation c = c,+ Sc, d = do+ 88, k # 0. Denote the perturba- 
tions on the relevant quantities by 

d A t )  = ~ o ( A i )  + SUI 

4A.J uo(AJ + 8 ~ 4  

u ( A A , )  = vo(AzA,) + 8 ~ 2 2  

Y ( A , ) =  ~ O ( A I ) + S Y I  

Y(AJ = Y O ( A ~ ) + S Y ~  

where all the Su and Sy quantities depend on Sc, Sd and k. Note that all Su and Sy 
are 0 if Sc=Sd= k = O  by definition. When we also introduce S p = p - p , ,  Su= 
u(A)-u, (A)  and Sy=y(A)-yo(A) we find with equation (A3.3) 

(Sp)2-SuSp+Sy-p0Su =o. (A3.7) 

With equations (A3.5) and (A3.6) we see that 

8u = Su, + S u 4  

S y = S y , + 8 y , + p o ( 8 U , +  8u4)+8u18u4-8u2, 

For Sp we thus find 

Su, + SUd*J(SU, - Su'J2+ 46u,, -4 (Sy,  + ay4) 
2 

Sp = 

(A3.8) 

(A3.9) 
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We also know that A is of the special form (6.13), because F is of type (3.1). 
Especially we know that A, and A, are even in k and A, and A, are odd. So all 
quantities in equation (A3.9) must be even in k. Moreover, S y , = O ( k ’ )  because 
y I  =det(A,) = bq’2 for all c, d if k =O.  The same holds for Sy,.  

Substituting this we see that the perturbation of the stability index must be like 
S u I + S u q * J ( S u I - ~ u ~ ) ’ + k 2 ~  

(A3.10) 
2 

Sp = 

where Su, , Su+ and U are functions of Sc, Sd and k’. 
Now we suppose Se, Sd and k to be of the same order of magnitude, say E. We 

calculate the lowest order contribution in equation (A3.10). If k = O  the matrix A 
decouples into two diagonal blocks, A,(&) and A,(Sd). Thus 

Sui( Se, Sd, k )  = 6u,(Sc, 0,O) + O( k’) = sI Sc +0( E ’ )  

Su4(Sc, Sd, k ) =  6u4(0, ad, 0 ) + O ( k 2 )  = s4 6 d + O ( E 2 )  

where s, = d u , / J S c ( O ,  0,O) and s4= Ju4 /JSd(0 ,  0,O). We remark that sI and sa are 
non-zero because of the assumptions on F (3.1) (monotonicity of traces for k =  0). 

If one introduces 
U,- U(O,O,O) 

then 

(A3.11) 

U, is typically non-zero. Its sign is related to the type of eigenvalues: a plus sign 
describes the unfolding of a definite pair of eigenvalues and a minus sign that of a 
mixed pair. 

In the special case of period one (thus A = DF) we can do one more simplification. 
For then Sy, = Sy,= 0 ,  because y ,  = det(A,) = b identically. So equation (A3.9) reduces 
to 

s, Sc+  s, Sd + J ( s ,  Sc- sq k’ U, + O(E2). 
2 

Sp = 

(A3.12) 

Using the special form of equation (3.1), equation (A3.12) gives, in lowest order again, 
equation (A3,11), but now simply with 

SUI + Su4 f J( Su, - SUJ2 + 4Su,, 
2 

sp = 

U,= u ( M N ) =  trace(MN). 
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